Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano
1.
Int J Mol Sci ; 24(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: covidwho-20244196

RESUMO

The effectiveness of the antiviral immune response largely depends on the activation of cytotoxic T cells. The heterogeneous group of functionally active T cells expressing the CD56 molecule (NKT-like cells), that combines the properties of T lymphocytes and NK cells, is poorly studied in COVID-19. This work aimed to analyze the activation and differentiation of both circulating NKT-like cells and CD56- T cells during COVID-19 among intensive care unit (ICU) patients, moderate severity (MS) patients, and convalescents. A decreased proportion of CD56+ T cells was found in ICU patients with fatal outcome. Severe COVID-19 was accompanied by a decrease in the proportion of CD8+ T cells, mainly due to the CD56- cell death, and a redistribution of the NKT-like cell subset composition with a predominance of more differentiated cytotoxic CD8+ T cells. The differentiation process was accompanied by an increase in the proportions of KIR2DL2/3+ and NKp30+ cells in the CD56+ T cell subset of COVID-19 patients and convalescents. Decreased percentages of NKG2D+ and NKG2A+ cells and increased PD-1 and HLA-DR expression levels were found in both CD56- and CD56+ T cells, and can be considered as indicators of COVID-19 progression. In the CD56- T cell fraction, increased CD16 levels were observed in MS patients and in ICU patients with lethal outcome, suggesting a negative role for CD56-CD16+ T cells in COVID-19. Overall, our findings suggest an antiviral role of CD56+ T cells in COVID-19.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Humanos , COVID-19/metabolismo , Subpopulações de Linfócitos T , Células Matadoras Naturais , Diferenciação Celular
2.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: covidwho-2312704

RESUMO

The binding properties of synthetic and recombinant peptides derived from N-terminal part of ACE2, the main receptor for SARS-CoV-2, were evaluated. Additionally, the ability of these peptides to prevent virus entry in vitro was addressed using both pseudovirus particles decorated with the S protein, as well as through infection of Vero cells with live SARS-CoV-2 virus. Surprisingly, in spite of effective binding to S protein, all linear peptides of various lengths failed to neutralize the viral infection in vitro. However, the P1st peptide that was chemically "stapled" in order to stabilize its alpha-helical structure was able to interfere with virus entry into ACE2-expressing cells. Interestingly, this peptide also neutralized pseudovirus particles decorated with S protein derived from the Omicron BA.1 virus, in spite of variations in key amino acid residues contacting ACE2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Chlorocebus aethiops , Humanos , SARS-CoV-2/metabolismo , Células Vero , Enzima de Conversão de Angiotensina 2/metabolismo , Ligação Proteica , Peptídeos/farmacologia , Peptídeos/metabolismo
3.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: covidwho-2245938

RESUMO

Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, is accompanied by a dysregulated immune response. In particular, NK cells, involved in the antiviral response, are affected by the infection. This study aimed to investigate circulating NK cells with a focus on their activation, depletion, changes in the surface expression of key receptors, and functional activity during COVID-19, among intensive care unit (ICU) patients, moderately ill patients, and convalescents (CCP). Our data confirmed that NK cell activation in patients with COVID-19 is accompanied by changes in circulating cytokines. The progression of COVID-19 was associated with a coordinated decrease in the proportion of NKG2D+ and CD16+ NK cells, and an increase in PD-1, which indicated their exhaustion. A higher content of NKG2D+ NK cells distinguished surviving patients from non-survivors in the ICU group. NK cell exhaustion in ICU patients was additionally confirmed by a strong negative correlation of PD-1 and natural cytotoxicity levels. In moderately ill patients and convalescents, correlations were found between the levels of CD57, NKG2C, and NKp30, which may indicate the formation of adaptive NK cells. A reduced NKp30 level was observed in patients with a lethal outcome. Altogether, the phenotypic changes in circulating NK cells of COVID-19 patients suggest that the intense activation of NK cells during SARS-CoV-2 infection, most likely induced by cytokines, is accompanied by NK cell exhaustion, the extent of which may be critical for the disease outcome.


Assuntos
COVID-19 , Humanos , Citocinas , SARS-CoV-2 , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Receptor de Morte Celular Programada 1 , Células Matadoras Naturais
4.
Biochemistry (Mosc) ; 87(7): 590-604, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: covidwho-2053145

RESUMO

Peptides are widely used for the diagnostics, prevention, and therapy of certain human diseases. How useful can they be for the disease caused by the SARS-CoV-2 coronavirus? In this review, we discuss the possibility of using synthetic and recombinant peptides and polypeptides for prevention of COVID-19 via blocking the interaction between the virus and its main receptor ACE2, as well as components of antiviral vaccines, in particular, against new emerging virus variants.


Assuntos
COVID-19 , Enzima de Conversão de Angiotensina 2 , Antivirais/uso terapêutico , Humanos , Peptídeos/uso terapêutico , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA